class: center, middle, inverse, title-slide .title[ # Spatial Causal Inference ] .subtitle[ ## spcausal : A Framework for Spatial Causal Inference ] .author[ ### Wenbo Lv ] .date[ ### 2024-10-18 ] --- class: inverse, middle, center <style type="text/css"> @import url(https://fonts.googleapis.com/css?family=Inconsolata); @import url('https://fonts.googleapis.com/css?family=Roboto+Condensed:300,300i,600'); @import url('https://fonts.googleapis.com/css?family=Roboto:600'); body { font-family: 'Roboto Condensed', 'Avenir Next', 'Helvetica Neue', 'Helvetica', sans-serif; font-weight: 300; } h1, h2, h3 { font-family: 'Roboto', 'Avenir Next', 'Helvetica Neue', 'Helvetica', sans-serif; font-weight: 600; } .remark-code, .remark-inline-code { font-family: 'Inconsolata', 'Consolas', Monaco, monospace; } .title-slide { background-image: url("https://spatlyu.github.io/materials/figures/ai4city_ppt_title_bg1.png"); background-position: center; background-size: contain; } </style> # Causal Inference Methods In Geography .footnote[The following is a Discipline-based perspective] --- ## 1. Based on Spatial Statistics -- - **Spatial Dependence** & **Spatial Association** -- - **Spatial Heterogeneity** -- - **Spatial Similarity** -- [On spatial effects in geographical analysis](https://www.geog.com.cn/EN/10.11821/dlxb202303001) [Geodetector: Principle and prospective](https://doi.org/10.11821/dlxb201701010) [Modeling of spatial stratified heterogeneity](https://doi.org/10.1080/15481603.2022.2126375) [Statistical Modeling of Spatially Stratified Heterogeneous Data](https://doi.org/10.1080/24694452.2023.2289982) [Causal inference in spatial statistics](https://www.sciencedirect.com/science/article/pii/S2211675322000173) [Spatial Causality: A Systematic Review on Spatial Causal Inference](https://onlinelibrary.wiley.com/doi/abs/10.1111/gean.12312) --- ## 2. Based on Spatial Econometrics -- - **Regression Discontinuity Design** -- - **Difference In Difference** -- [Conduct Multiple Types of Geographic Regression Discontinuity Designs(SpatialRDD)](https://axlehner.github.io/SpatialRDD/index.html) [Spatial Difference-in-differences (SpatialDID)](https://www.sciencedirect.com/science/article/pii/S0165176515004371) [Evidence on the impact of sustained exposure to air pollution on life expectancy from China’s Huai River policy](https://www.pnas.org/doi/full/10.1073/pnas.1300018110) --- ## 3. Based on Spatial Epidemiology -- - **Spatial Causal Mediation Analysis** -- - **Agent-Based Modeling** -- - **Bayesian Spatial Models** -- - **Spatial Survival Analysis** -- - **Spatial Propensity Score Matching** -- [Bayesian inference with INLA](https://becarioprecario.bitbucket.io/inla-gitbook/) [Dynamic Time Series Models using R-INLA: An Applied Perspective](https://ramanbala.github.io/dynamic-time-series-models-R-INLA/) [Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA ](https://becarioprecario.bitbucket.io/spde-gitbook/) [Geospatial Health Data: Modeling and Visualization with R-INLA and Shiny](https://www.paulamoraga.com/book-geospatial/) --- ## 4. Based on Causal Machine Learning -- - **Causal Graph Learning** -- - **Causal Forest** -- and so on (I don't know much about it) -- [**DoWhy** documentation](https://www.pywhy.org/dowhy) [**CausalML** documentation](https://causalml.readthedocs.io/en/latest/about.html) --- ## 5. Based on Dynamic Systems Modeling -- - **Temporal State space reconstruction** -- - **Spatial State space reconstruction** -- [Detecting Causality in Complex Ecosystems](https://www.science.org/doi/10.1126/science.1227079) [Partial cross mapping eliminates indirect causal influences](https://www.nature.com/articles/s41467-020-16238-0) [Detecting Causality from Nonlinear Dynamics with Short-term Time Series](https://www.nature.com/articles/srep07464) [Inferring causation from time series in Earth system sciences](https://www.nature.com/articles/s41467-019-10105-3) [Spatial convergent cross mapping to detect causal relationships from short time series](https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/14-1479.1) [Causal inference from cross-sectional earth system data with geographical convergent cross mapping](https://www.nature.com/articles/s41467-023-41619-6) --- class: inverse, middle, center # Spatial Causal Inference Ecosystem in R language --- ### Related Ecosystem -- Data Clean -> tidyverse -- Statistics Inference -> tidymodel & easystats -- Bayesian -> INLA & Stan & tidybayes & R2WinBUGS -- Machine Learning -> mlr3verse & h2o -- Deep Learning -> torch & tensorflow & keras & mxnet -- Geospatial Processing -> sf & terra & stars & whitebox & qgisprocess -- Spatial Statistics -> spdep & spatstat & spatialreg & gstat & GD & GWmodel -- ### Causal Inference In R -- [`CRAN Views : Causal Inference`](https://cran.r-project.org/web/views/CausalInference.html) -- ### So, Where is the unified framework of spatial causal inference in R? --- class: inverse, middle, center # spcausal : A Framework for Spatial Causal Inference --- ## Problems to be solved -- [Two Language Problem](https://scientificcoder.com/how-to-solve-the-two-language-problem) -- Complex interdisciplinary and cross-programming language background -- Diverse and robust algorithm integration -- User-friendly API -- Comprehensive reference documentation -- Sustained community vitality --- ## What will we do? -- - Testing and development of the original algorithm in R version -- - Further optimization of the computation process -- - Expanding to other programming languages --
--- class: center, middle background-image: url("https://spatlyu.github.io/materials/figures/ai4city_ppt_title_bg4.png") background-position: center background-size: contain # Thanks ### Wenbo Lv ### lyu.geosocial@gmail.com