A wrapper function for rgeoda::schc()
.Spatially constrained hierarchical clustering is
a special form of constrained clustering, where the constraint is based on contiguity (common borders).
The method builds up the clusters using agglomerative hierarchical clustering methods: single linkage,
complete linkage, average linkage and Ward's method (a special form of centroid linkage). Meanwhile,
it also maintains the spatial contiguity when merging two clusters.
Usage
st_schc(
sfj,
varcol,
k,
wt = NULL,
boundvar = NULL,
method = "average",
min_bound = 0,
scale_method = "standardize",
distance_method = "euclidean",
rdist = numeric()
)
Arguments
- sfj
An sf (simple feature) object.
- varcol
The variable selected to calculate spatial lag, which is a character.
- k
The number of clusters.
- wt
(optional) The spatial weights object,which can use
st_weights()
to construct,default is constructed byst_weights(sfj,'contiguity')
.- boundvar
(optional) A data frame / tibble with selected bound variable.
- method
(optional) "single", "complete", "average"(default),"ward".
- min_bound
(optional) A minimum bound value that applies to all clusters.
- scale_method
(optional) One of the scaling methods 'raw', 'standardize', 'demean', 'mad', 'range_standardize', 'range_adjust' to apply on input data. Default is 'standardize' (Z-score normalization).
- distance_method
(optional) The distance method used to compute the distance between observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan".
- rdist
(optional) The distance matrix (lower triangular matrix, column wise storage).
Value
A names list with names "Clusters", "Total sum of squares", "Within-cluster sum of squares", "Total within-cluster sum of squares", and "The ratio of between to total sum of squares".
Author
Wenbo Lv lyu.geosocial@gmail.com
Examples
library(sf)
guerry = read_sf(system.file("extdata", "Guerry.shp", package = "rgeoda"))
guerry_clusters = st_schc(guerry,c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids'),
4,method = "complete")
guerry_clusters
#> $Clusters
#> [1] 1 1 1 1 1 1 1 1 1 1 1 1 4 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [39] 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#> [77] 1 1 1 1 1 1 1 1 1
#>
#> $`Total sum of squares`
#> [1] 504
#>
#> $`Within-cluster sum of squares`
#> [1] 78.13831 54.75868 81.49771 63.48675 80.60111 65.74389
#>
#> $`Total within-cluster sum of squares`
#> [1] 79.77355
#>
#> $`The ratio of between to total sum of squares`
#> [1] 0.1582809
#>