Spatial prediction based on spatial stratified heterogeneity using sandwich mapping model.
Usage
sandwich(
sampling,
stratification,
reporting,
sampling_attr,
ssh_zone,
reporting_id,
weight_type = "area"
)
Arguments
- sampling
Sampling layer, spatial point vector object which is
sf
or can be converted tosf
object.- stratification
Stratification layer, spatial polygon vector object which is
sf
or can be converted tosf
object.- reporting
Reporting layer, spatial polygon vector object which is
sf
or can be converted tosf
object.- sampling_attr
The
attribute
column for the sampling point in sampling layer.- ssh_zone
The
zone
column for the stratification layer.- reporting_id
The
id
column for the reporting layer.- weight_type
(optional) Geographic area based on weight(
area
) or indicate human population size(population
) , Default isarea
.
Value
A sf
object with estimated mean sandwichest_mean
and standard error sandwichest_standarderror
.
References
Lin, Y., Xu, C., & Wang, J. (2023). sandwichr: Spatial prediction in R based on spatial stratified heterogeneity. Transactions in GIS: TG, 27(5), 1579–1598. https://doi.org/10.1111/tgis.13088
Author
Wenbo Lv lyu.geosocial@gmail.com
Examples
library(sf)
#> Linking to GEOS 3.10.2, GDAL 3.4.1, PROJ 8.2.1; sf_use_s2() is TRUE
simpath = system.file("extdata", "sim.gpkg", package="spEcula")
sampling = read_sf(simpath,layer = 'sim_sampling')
ssh = read_sf(simpath,layer = 'sim_ssh')
reporting = read_sf(simpath,layer = 'sim_reporting')
sandwich(sampling = sampling,stratification = ssh,reporting = reporting,
sampling_attr = 'Value',ssh_zone = 'X',reporting_id = 'Y',
weight_type = 'population')
#> Warning: attribute variables are assumed to be spatially constant throughout all geometries
#> Simple feature collection with 7 features and 3 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 5.684342e-14 ymin: 2 xmax: 4 ymax: 6
#> Geodetic CRS: WGS 84
#> # A tibble: 7 × 4
#> Y sandwichest_mean sandwichest_standarderror geometry
#> <dbl> <dbl> <dbl> <POLYGON [°]>
#> 1 1 NaN NaN ((0.8 4, 0.8 4, 1 4, 1.2 4, …
#> 2 2 266. 2.11 ((2.8 6, 2.6 6, 2.4 6, 2.2 6…
#> 3 3 311. 2.42 ((2.4 3, 2.4 2.8, 2.2 2.8, 2…
#> 4 4 413. 3.06 ((4 3.6, 4 3.8, 4 4, 4 4.2, …
#> 5 5 NaN NaN ((1 3.6, 1 3.4, 1.2 3.4, 1.4…
#> 6 6 NaN NaN ((1.6 3, 1.6 2.8, 1.8 2.8, 2…
#> 7 7 93.8 2.85 ((0.6 5, 0.6 5, 0.6 5.2, 0.6…
sandwich(sampling = sampling,stratification = ssh,reporting = reporting,
sampling_attr = 'Value',ssh_zone = 'X',reporting_id = 'Y',
weight_type = 'area')
#> Warning: attribute variables are assumed to be spatially constant throughout all geometries
#> Simple feature collection with 7 features and 3 fields
#> Geometry type: POLYGON
#> Dimension: XY
#> Bounding box: xmin: 5.684342e-14 ymin: 2 xmax: 4 ymax: 6
#> Geodetic CRS: WGS 84
#> # A tibble: 7 × 4
#> Y sandwichest_mean sandwichest_standarderror geometry
#> <dbl> <dbl> <dbl> <POLYGON [°]>
#> 1 1 381. 2.43 ((0.8 4, 0.8 4, 1 4, 1.2 4, …
#> 2 2 262. 2.10 ((2.8 6, 2.6 6, 2.4 6, 2.2 6…
#> 3 3 298. 2.49 ((2.4 3, 2.4 2.8, 2.2 2.8, 2…
#> 4 4 401. 2.88 ((4 3.6, 4 3.8, 4 4, 4 4.2, …
#> 5 5 390. 2.53 ((1 3.6, 1 3.4, 1.2 3.4, 1.4…
#> 6 6 357. 2.15 ((1.6 3, 1.6 2.8, 1.8 2.8, 2…
#> 7 7 203. 2.40 ((0.6 5, 0.6 5, 0.6 5.2, 0.6…